National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Magnetic anisotropies in (Ga,Mn)As and metallic multilayers with strong spin-orbit coupling
Zemen, Jan ; Jungwirth, Tomáš (advisor) ; Diviš, Martin (referee) ; Šob, Mojmír (referee)
The thesis presents a numerical study of magnetocrystalline anisotropies in dilute ferromagnetic semiconductors and transition metal systems intended to advance the current understanding of the microscopic origins of this relativistic effect and to contribute to the development of spintronic devices with new functionalities. The major part of the work surveys magnetocrystalline anisotropies in (Ga,Mn)As epilayers and compares the calculations to available experimental data. Our model is based on an envelope function description of the valence band holes and a spin representation for their kinetic-exchange interaction with localised electrons on Mn2+ ions, treated in the mean-field approximation. For epilayers with growth induced lattice-matching strains we study in-plane to out-of-plane easy axis reorientations as a function of Mn local-moment concentration, hole concentration, and temperature. Next we focus on the competition of in-plane cubic and uniaxial anisotropies. We add an in-plane shear strain to the effective Hamiltonian in order to capture measured data in bare, unpatterned epilayers, and we provide microscopic justification for this approach. The model is then extended by an in-plane uniaxial strain and used to directly describe experiments with magnetisation direction controlled by...
Theoretical study of spin-orbit coupling on spectra and photophysics of rhenium complexes
Heydová, Radka ; Záliš, Stanislav (advisor) ; Slavíček, Petr (referee) ; Srnec, Martin (referee)
Title: Theoretical study of spin-orbit coupling on spectra and photophysics of rhenium complexes Author: RNDr. Radka Heydová Department: Physical and Macromolecular Chemistry Supervisor: Ing. Stanislav Záliš, CSc., JHI AS CR, v.v.i. Supervisor's e-mail address: stanislav.zalis@jh.inst-cas.cz Abstract: Relativistic effects, especially spin-orbit coupling (SOC), play an essential role in transition metal chemistry and SOC treatment is indispensable for a correct theoretical description. To demonstrate the importance of SOC, the energies and oscillator strengths of vertical transitions for a series of [ReX(CO)3(2,2'-bipyridine)] (X = Cl, Br, I) and [Re(imidazole)(CO)3(1,10-phenanthroline)]+ complexes were calculated in the spin-free (SF) and spin-orbit (SO) conceptual frameworks. Two different computational approaches were adopted: SO-MS-CASPT2 where SOC was added a posteriori using a configuration interaction model (SO-RASSI), and the approximate perturbative SO-TD-DFT method. Relativistic effects were included via the two-component Douglas-Kroll-Hess transformation and the zeroth-order regular approximation in the former and the latter technique, respectively. The SF (i.e. accounting only for the scalar relativistic effects) and SO results from both methods were compared with each other and to available...
Study of the effect of spin-orbit interaction in solids
Mrozek, Jan ; Carva, Karel (advisor) ; Šipr, Ondřej (referee)
One of the effects the spin orbit interaction leads to is the Anomalous Hall effect. In this thesis we describe the origins of the Anomalous Hall effect and its con- tribution to understanding the solid state physics. We introduce the formalism of linear response theory and other approximations needed to perform calcula- tions of the Anomalous Hall conductivity. We present two different models of the anomalous Hall conductivity - one based on the Kubo formalism and the other based on chemical potential difference. We then compare the models in a simple setting based on Strontium ruthenate. We show that in the case of Strontium ruthenate the models have very similar predictions. 1
Relativistic Theory of Electron Transport in Magnetic Layers
Sýkora, Rudolf ; Turek, Ilja (advisor) ; Šob, Mojmír (referee) ; Drchal, Václav (referee)
Title: Relativistic Theory of Electron Transport in Magnetic Layers Author: Rudolf Sýkora Department / Institute: Institude of Theoretical Physics Supervisor of the doctoral thesis: doc. RNDr. Ilja Turek, DrSc., Department of Condensed Matter Physics Abstract: We review the density-functional theory (DFT) in detail using the Levy Lieb ap- proach. The Kohn Sham scheme is discussed, starting from the simplest spinless non- relativistic case, then including spin and considering potential spin magnetism, and finally deriv- ing the full Kohn Sham Dirac relativistic scheme. The Linear Muffin-Tin Orbital (LMTO) method for electronic-structure calculation is presented, together with mentioning the necessary changes to include the spin-orbit (SO) interaction effects to an otherwise scalar-relativistic (SR) theory. Derivation of an electronic-conductance formula for a layered system is given, based on the Landauer scattering picture and using simple non-equilibrium Green functions. The formal- ism is applied to layered metallic systems of light elements Co, Ni, Cu elements, and to layered systems with a tunnelling barrier, Fe/MgO/Ag and Fe/GaAs/Ag. The effects of the SO interac- tion on the Giant Magnetoresistance (GMR) ratio and/or the Tunnelling Anisotropy Magnetore- sistance (TAMR) for these systems are discussed....
Magnetic anisotropies in (Ga,Mn)As and metallic multilayers with strong spin-orbit coupling
Zemen, Jan ; Jungwirth, Tomáš (advisor) ; Diviš, Martin (referee) ; Šob, Mojmír (referee)
The thesis presents a numerical study of magnetocrystalline anisotropies in dilute ferromagnetic semiconductors and transition metal systems intended to advance the current understanding of the microscopic origins of this relativistic effect and to contribute to the development of spintronic devices with new functionalities. The major part of the work surveys magnetocrystalline anisotropies in (Ga,Mn)As epilayers and compares the calculations to available experimental data. Our model is based on an envelope function description of the valence band holes and a spin representation for their kinetic-exchange interaction with localised electrons on Mn2+ ions, treated in the mean-field approximation. For epilayers with growth induced lattice-matching strains we study in-plane to out-of-plane easy axis reorientations as a function of Mn local-moment concentration, hole concentration, and temperature. Next we focus on the competition of in-plane cubic and uniaxial anisotropies. We add an in-plane shear strain to the effective Hamiltonian in order to capture measured data in bare, unpatterned epilayers, and we provide microscopic justification for this approach. The model is then extended by an in-plane uniaxial strain and used to directly describe experiments with magnetisation direction controlled by...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.